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RESEARCH LABORATORIES FOR THE ENGINEERING SCIENCES

Members of the faculty who teach at the undergraduate and graduate levels and a number of
professional engineers and scientists whose primary activity is research generate and conduct the
investigations that make up the school's research program. The School of Engineering and Applied Science
of the University of Virginia believes that research goes hand in hand with teaching. Early in the
development of its graduate training program, the School recognized that men and women engaged in
research should be as free as possible of the administrative duties involved in sponsored research. In 1959,
therefore, the Research Laboratories for the Engineering Sciences (RLES) was established and assigned the
administrative responsibility for such research within the School.

The director of RLES-himself a faculty member and researcher-maintains familiarity with the
support requirements of the research under way. He is aided by an Academic Advisory Committee made up
of a faculty representative from each academic department of the School. This Committee serves to inform
RLES of the needs and perspectives of the research program.

In addition to administrative support, RLES is charged with providing certain technical assistance.
Because it is not practical for each department to become self-sufficient in all phases of the supporting
technology essential to present-day research, RLES makes services available through the following support
groups: Machine Shop, Instrumentation, Facilities Services, Publications (including photographic facilities),
and Computer Terminal Maintenance.
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1. PROBLEM DESCRIPTION

Many important problems in fluid dynamics, among other areas,

are modeled by nonlinear parabolic differential systems with initial

values given in one Pindependent variableP x, and boundary values in

the remaining dependent variables. Hyperbolic systems can sometimes

be treated as a special case. For example, the inviscid flow case

of the Navier-Stokes equations k is a hyperbolic system, which the

viscous flow case is elliptical. A survey of currently used numerical

methods is in Richtmeyer and Morton [2]. In subsonic flow cases, the

nonlinear terms are small enough to be ignored, but these terms must be

included in supersonic and hypersonic flow. These numerical calculations

usually involve a finite difference mesh over the boundary value problem

variables, resulting in a space discretization matrix equation which for

the nonlinear system varies at each step in x, the independent variable

- - representing time in the dynamic case or one of the space variable for

the steady state case. Then this nonlinear system is solved as an

initial value problem in x. The initial value problem is usually solved

by a one step implicit method for reasons of cost and stability. Some

methods based on finite element methods for the boundary value problem

can be used, but successful methods are only available for the linear

cases, such as subsonic flow problems

All of these methods require large amounts of computer memory to

store the matrices, and, particularly in the nonlinear case where thei I matrices must be reevaluated often, large amounts of time. Therefore, it

is desirable to investigate the relationship of various aspects of these
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numerical methods in an effort to reduce the total computation time with

no loss in accuracy or significant increase in storage requirements. To

give an overview of the current state of development, a sample problem

which has been studied by the principal investigator [4] is described.

The incompressible fluid flow around a cone at hypersonic speed

and angle of attack a > 0 is modeled by a parabolic system of nonlinear

partial differential equations expressing conservation of energy, mass,

and momentum, plus an algebraic equation of state. Typical flow variables

are functions of density, velocity and energy. The asymptotic (steady-

state) solution in three dimensions is sought. A suitable coordinate

system for a cone shaped object uses the variables x, the length from

the tip along the cone generator; n the normal to the surface relative

to the bow shock stand-off distance (n = E/d(x, ) where E is perpendicular

to x and d is the bow shock stand-off distance computed from theory); and

* = 180 ° at the leeward side. Separation is likely to occur at the

leeward side at significant angle of attack a > 0, and standard numerical

methods have proven inadequate to model this case, so special computer

7" methods have been developed for it. See Figure 1.

Lubard and Helliwell [5] have treated this problem as a parabolic

boundary value problem in * and n since theoretical results are available
on the behavior of the bow shock, and as an initial value problem in x

which allows a marching type numerical solution to be generated given

an initial condition away from the point x - 0. They treated the non-

linear system

au + 3F(U) + 3G(U) .3V(U, aU/n, au/90) +W(UP au/an, u/30 )

ax +an 30a an~, 1

where U is the m-dimensional state vector, F and G are given vector
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functions of U, and V and W are vector functions of U and its partial

derivatives. Steady state Navier-Stokes equations are a special case

of (1). For the purpose of illustration, let the right hand side of (1)

be 0, giving the equation for inviscid flow. A discussion of boundary

and initial conditions can be found in [51. By using a finite difference

scheme in n and 0 for the boundary value problem, a one-step implicit

integration scheme in x can be employed to solve the initial value

problem. For the implementation of Lubard and Helliwell [5], central

differences at each x value

a= _ (n +l *k) - U(n 1 i'k )  (2)

2/
)2 -(ni Ok- 2U(n 3k

) + U(ni ,k+l) (3)2 2 k-l '1~ '

are used with the Backward Euler implicit formula

U(xi+1 , ni lk) - U(xi, nj, Ok) + Ax au(xi+1 , nj, k)/ax. (4)

Stability considerations derived from considering the numerical solution

of an associated linearized system of equations leads to both lower and

upper bounds on Ax as a function of An and A0.

To understand the implementation, consider the linearized problem

for A = aF/3U and B = aG/aU given as

+ A -L + B U - 0. (5)
ax an a

Applying the trapezoidal rule U(xi+ l ) = U(xi) +-. A + U )

1 a more accurate implicit scheme than Backward Euler, and using a truncated

Taylor Series for F(U) and G(U) given by

4
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F(U(xi+) F i+1 = Fi + Ai (U(xi+ 1 ) - U(xi)) + O(Ax 2)

i+l i+l i
I G(U(xi+ 1)) = cil= Gi+ Bi (U(xi+i) - U(xi)) + 0(Ax 2)

yields the system of linear equations

+BI ui+AE x C (6)t--- + 11-+__ = [ + Lx- ,!! + ,.B) U- Ax\ L + G .

This large, sparse system can be solved by methods such as the alternating

direction implicit (ADI) method of Douglas [6] which solves only the

equation in n first, then the equations in *. Beam and Warming [7]

introduce an error of (Ax)3 in an approximate factorization scheme based

on Peaceman and Rachford [8] by replacing (6) with

Ax 3A i  Ax 3Bi  + Ax + A B uian Tf +T ) 2 an U

-Ax ( + _-L + 0(Ax ). (7)

Since the error introduced is of the same order Ax3 as the error in the

trapezoidal rule, stability is not affected. This equation can then be

solved in two levels

I + -- AU* =-Ax + L
2an a

ui+  = i +u i.B U = AU

This method has several disadvantages. If used with a more

accurate difference method, the error introduced in the factorization

will lower the error order of the method; however, if used with a lower

order method such as the Backward Euler, good results could be expected.

5



However, Lubard and Helliwell note that the difference 
in 0 near n = 0

has a singularity there, and use instead a method that uses the factorization

(7) in n but solves for each set of solutions at each *k in sequence

S0 = 00 to *k = 1800 in steps of 60. This is done iteratively until the

computation converges. At each *k' the resulting system of linear

equations is an n by n block tridiagonal matrix of block size m 
by m

where i = 1, ... , n for n i and m = 6, the number of states at each point.

The method is comparable to a Gauss-Seidel iteration with each 
element

of the solution replaced by a (n*m)
2 size linear equation.

In actual practice, the equations are rewritten to compute 
the

change AU in the current value of U(x +l). This is called the delta

form of the corrector and yields a linear block tridiagonal 
system

B BC
1 1

A2 B2  C2  1 AU =RHS (8)

An Bn

where Ai , Bi , and Ci are square m by m matrices. 
RHS is a m by n corrector

for U(xi+l)•

I6
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2. Research Conducted

A portable program called HVSL [91, which is a modified version

of the Lubard and Helliwell code and is used at Arnold Engineering

Development Center (AEDC), was available for experimentation. It is

portable since the initial state of the system is read in, in part,

from cards and then, after solving a boundary value problem, all initial

values at 50 n points and 19 0 points are known. These can be changcd

by an interpolating procedure included in the code. For experimental

purposes, the number of 0 values from windward (0*) to leeward (1800)

was reduced from 19 to 3. Validation tests were run at angle of attack

a= 1 to determine if this modified system produced the same solution.

At least three decimal place agreement was observed at 0 = 0, 90, and

1800, so it was concluded that this much less expensive test program

was adequate for testing modifications to HVSL.

The following changes were made to HVSL.

1. The initial (predicted) value of U(x j+), representing the

solution U(x+ 1, nk' ) for k = 1, NK, k = 1, NL by the Euler explicit

method, is computed by

U(x+) = U(x ) + (U(x.) - U(xl)) Ax j+/Ax.

While this appears to be using a finite difference to approximate the

derivative U(x.) = dU(x.)/dx, it is actually the correct value since, ifJI

Euler's implicit formula is iterated to convergence,

U(xj) = U(x_ 1) + Axj U(xj). (9)

The modified program stores the derivative term Ax U(xj) in AU0 after

the last evaluation and correction of whatever numerical method is in use,

and this is used in an Euler explicit predictor. No additional storage

I



is required.

2. The check for convergence in subroutine IMPETA checks to see

if the right hand side of the matrix equation (8) satisfies

6 2 -6
E RHS ijkl< 6*10i= i,j,k, -

for all k' for each OV I = 1, NL, for convergence at x.. The subscript iJ

refers to the six state variables. In test runs, no calculation ever

terminated due to meeting this convergence test, but instead the maximum

number of iterations were used. A more appropriate convergence criterion

would be to stop when the last corrector did not make any changes in the

third decimal place of any variable, and this relative change criterion

was implemented.

3. The Lubard and Helliwell code uses the Backward Fuler corrector

U(x U(x) + Ax U(x j+)

to calculate successively better approximations to U(x j+l) Using the

the delta form, it is seen that

AU0 = U0 (x j+ l ) - U(x.) = Ax U(x.) (10)

AU = U(x j+ ) -U(x )-~ xj+l )

= U(x.) + AX U x j+l) - (U(x.) + &x 1(x )

= Ax(U (x I) - U(x ()

AUi = Ui(xJ+l) - Ui-l(x j+l )
J+

= Ax(u -l(x j+l) -2 (x)) i 2, ... , 5. (12)

- ~



Since this calculation is already programmed, AU can be used as is in

two different corrector formulas. The Trapzoidal Corrector

U i(x j+) U(xj) + Ax(Uf-I(x ) + U(xj))/2.

can be implemented by

U1(x j+l) =U(x.) + Ax(U0(x j+l) + (xj))/2.

= U(xj) + Ax U(xj) + Ax(U0(xj+I) - U(x.))/2.

= U0 (xj+I) + AU1 /2. (13)

and then

U (x+) = U(xj) + Ax(U -I(xj+l) + 6(xj))/2.

*U(xj) + &x(Ui-2(xj+I ) + 6(xO))/2 + Ax(Ui-I(xI - Ui-2(x j+)/2.

Ui-l (x j+) + Aui /2. (14)

The Iterated Multistep Method (IMS) due to Hyman [10] is:

UO(xj+l ) = U(x.) + Ax U(x)

UI(xj+I 5 = U(x.) + Ax(uO(x j+) + 6(x ))/2.

U (x J+ I ) = i-l(x )+l + Ax(UCi-(x ) - ui-2(x J+ l))/(i+l), i = 2,3,4,....

This can be formulated the same as the Trapezoidal method for i = 0,1,

and then
I!

i i-l i
U (x ) = U (x )~ + (AU )/(i+l), i1 2,3 ... (15)

9



These alternative methods have both stability and accuracy advantages

over the implicit Euler corrector. The Trapezoidal corrector, when

applied to the linear complex equation

U = X U, (16)

with nonzero initial value of U09 damps out any error introduced by

either machine roundoff error or the discretization of the solution with

respect to x for any Ax > 0 as long as X has a negative real part. This

is called A-stability [11]. The exact solution to (16), exp(Xx)U0 , behaves

the same way since an initial error d0 yields the solution exp(Xx)U0 + exp(Xx)d0 ,

and thus the error contribution goes to zero as x goes to infinity if

X has negative real part. This assumes that the Trapezoidal corrector is

solved exactly, which is possible in the linear case since

U i+ = (1 + AxX/2)/(l - AxX/2) U .

Stability behavior is somewhat different if U i+ is solved iteratively,

as must be the case in a nonlinear equation. Thus, the stability behavior

of the trapezoidal corrector should be investigated further.

The accuracy of the Trapezoidal corrector is based on the local

discretization error, which is the size of the error in U i+ if Ui were

the correct solution. This is proportional to Ax2 for the implicit

3
Euler corrector, but to Ax for the Trapezoidal corrector. Thus, the

Trapezoidal formula is more accurate.

The IMS method, applied to (16), has the property that each successive

corrector iteration increases the stability region, i.e. AxX such that

errors introduced are not increasing in size as the calculation proceeds.

10



* Figure 2. Linear Stability analysis of Iterated multistep
method. Consecutively larger figures are

U for i1 0,1,2,3.



See Figure 2. Also, in the linear case only, each application of the IMS

corrector equation increases the accuracy, i.e. the discretization error

is pootoatoxi+lof U.i s proportional to Ax In the nonlinear case, the error term is

similar to that of the Trapezoidal corrector.

The above changes were made to the HVSL test program, and the resulting

values were compared to the original program. It was noted that none

,:f the test cases achieved convergence, either the old or new convergence

criterion. However, all significant numerical values did agree to two

decimal places, so it was concluded that there was a marginal stability

problem, and the stability analysis in [12] was insufficient to explain

the phenomenon since that analysis was based on linearizing the system

and inspecting the eigenvalues of the resulting Jacobian matrices. There-

fore, a simpler test case involving only one space variable and time

as the independent variable was used to study the three methods. The

nonlinear problem has properties similar to the HVSL problem, and uses

the same discretization as the Lubard and Helliwell method.

The quasi-one-dimensional time dependent flow of an inviscid perfect

gas through a converging-diverging nozzle use the variables:

x = distance, normalized to [0.,i.],

A(x) nozzle cross-sectional area,

U m

Le

where the state variables are P, the gas density, m = PU where U is the

* 2velocity along the x axis, and e = P(e + U /2) for e = c T, where T is thev

temperature and c is the gas constant. Thus, T = (e - m 2/(2p))/(pc v)V • •

The equations are

3U + aFa (17)



where

m 4-2]p RT + m2-p

_me/p + RTI

and

- m d(ln A)/dx

G = ~2 d(ln A)/dx/p

L m(e/p + RT) d(lnA)/dxl

A working version of this program was provided by Dr. John C. Adams

of AEDC. The program linearized (17) with respect to t, giving

dU + aF dU= G
dt 3U dx (18)

aU

and replacing - by finite difference approximations over a net of 101 equally

spaced points. Thus, the result is a system of 303 ordinary differential

I i equations in t, with algebraic boundary condition consistent with the

method *f characteristics solution in one dimension at the inlet, and

extrapolation of supersonic outflow at the exit. The resulting block tri-

diagonal system is

B C1

A A B C2  AURHS

A n n

for 3 by 3 matrices Ai Bi , Ci, i = 1, ..., 101. The linearized initial

value problem is solved exactly, once each time step. The numerical method

Q 13



is parametrized as [13]

dU(tn (1 + z) A - zV U(t )
dt At I + OA n

where A is the forward difference operator, V is the backward difference

operator, and 0 1 1, z - 0 yields the exact implicit Euler solution

of the linearized problem; 0 = 1/2, z - 0 yields the exact trapezoidal

solution; and 0 = 0, z = 0 would yield the explicit Euler predictor

except the program would divide by zero if 0 = 0. This does not emulate

the iterative solution technique in the Lubard and Helliwell code, so

the program was rewritten to use an explicit Euler predictor approximated

by 0 = 1 0
- r, r large, then successive linearizations and computations of

AUi consistent with the implicit Euler technique used in HVSL. Then

either AUi could be used as is to get the implicit Euler predictor, or

else equations (10, 13, 14) for Trapezoidal corrector or (10, 13, 15) for

IMS corrector could be used.

The results for the Trapezoidal and IMS test runs, using a constant

4 corrector iterations, agreed to 4 decimal places with the original

program at the 4th time step, and to 2 decimal places after 15 time steps

(the equations are being integrated to steady state). The velocity U,

which depends on e and P, becomes unstable by the 4th time step when the

implicit Euler corrector was iterated 4 times, by the 10th time step when

iterated only once. Thus, the stability properties of the linearized

equation are seen to be different from those of the nonlinear equation. Note

that the step size At was chosen to meet the Courant-Friedrich-Lewy

criteria for the linearized implicit Euler formula, yet this step size

does not work with the nonlinear equation it is based on. This confirms

that a stability problem exists.

14
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A new technique has been developed to study stability of ordinary

differential equation integrators as they are applied to nonlinear differential

systems (14]. The analysis can usually be carried out using an interactive

graphics package called STAN. If the user knows an approximate equilibrium

point U* where dU/dt - 0, then it is possible to investigate the stability

of any two dimensional subsystem by varying only two values, i.e.,

we investigate the system u = (ui, uj) = U* + eidi + ej d where ei, ej

are the i-th and j-th unit vectors and di, d are scalar perturbations.

This allows the contractivity region defined by Dahlquist [15] to be

mapped. The boundary of this region consists of points at which the

forward difference in the independent variable t of a quadratic function

V(u) = u*Qu is zero. V(u) is chosen in the same way as the Liapunov

stability function is chosen [16], using the Jacobian matrix of the

derivative with respect to the vector u = (ut, u1 ). Thus, if this boundary

is found using the exact solution, then any solution U(t0 + At) with

initial conditions U(t0 ) on the boundary has the property V(u(t0 + At)) =

V(u(t 0 )). This can be further refined to compute a stability region

inside which u(t0 + nAt) will stay for any n, at least in the autonomousi'
case. Similar regions can be generated for the numerical solutions using

the same At. Figure (3) illustrates the results for the linear case:

y = u I + iu 2

= xy, y(O) = (u1, u2) (19)

X = ln(y 0 )/At

with exact solution at mesh points y(t) y+l 2For V(u) u 2 + u2, the

n y 0  . o ~)- 1  2, h

J contractivity region and stability region are both the unit circle about 0.

15
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-1.5

F

Figure 3A. Non-Linear Stability analysis of y' Ey:
Contractvily region for a) explicit Euler,
b) trapezoidal with one corrector iteration,
c) trapezoidal with 2 corrector iterations.!1



+1.5

-1.5 

+1.5

Figure 3B. Non-Linear Stability Analysis of y' Xy
a) explicit Euler predictor. one imvlicit
Euler corrector b) same predictor, 2
corrector iterations.
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Figure 3C. Nan-Linear Stability analysis of y' - Xy for
the iterated multistep method for al 2 steps
b) 3 steps c) 4 steps d) 5 steps.
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The point (0,0) corresponds to the point at infinity in the linear analysis

described earlier, and the point (1,0) corresponds to the origin in the

linear analysis.

To get the exact solution to a differential system, a program

SERIES [17], written in PASCAL, is used. It can accept up to 20 first

order ordinary differential equations as input and will write a FORTRAN

subroutine SOL(T, Y, YO, IND) which, when called for a certain value of]

t = T, given initial conditions of u(t) at t = 0 stored in the FORTRAN

array YO, will recursively generate the coefficients of the power series

solution of u(t) starting with the constant terms stored in YO, and

output in the array Y the solution u(t), or else indicate that the radius

of conveigence of the series is not greater than t by setting IND to

certain nonzero values. Of course, not every possible function is

included, but the trigonometric, logorithmic, and exponential functions

of the dependent variables are allowed, as well as most FORTRAN functions

of the independent variable. This program has been tested on numerous

nonlinear systems and the resulting subroutine SOL has been interfaced

to STAN, but no system of partial differential equations has been included.

Two different stability analyses were attempted for the converging-

diverging nozzle example. In one, two interior stations were isolated, and

the forward divided difference was used on all variables that were differentiated

with respect to x. Letting two consecutive p values be called Rl and R2,

two consecutive m values be XMl and XM2, and two consecutive e values

-be El and E2, a system of six state variables would result. However,

temperature, which could be considered constant but is actually a slowly

varying function of e, m, and p, and d(ln A)/dx, a constant, must be

jaccounted for at the two points. By setting their derivatives with respect

to t to zero, these constants can be input to STAN along with the state

19



variables. Let XK and XK2 be consecutive values of d(ln A)/dx and TMP1

and TMP2 be temperature values, and denote the derivative of a variable

Z by Z., then the resulting input to SERIES is:

Ri.=- (XM2-XM1)/DX-XMI*XK1;

R2. =-(XM2-XMl)/DX-XM2*XK2;

XMy. =-XM*XM/RI*XKI+( (XM1/Rl) **2-R*TMPI) *(R2-RI)/DX

-2. *XMI/R*(XM2-XM1)/DX;

XM2.=-XM2*XM2/R2*XK2+((XM2/R2)**2-R*TMP2)*(R2-Rl) IDX

-2.*(XM2*XM2/R2)*(XM2-XMI)/DX;

El.=-XMI*(El/R+R*TMPI)*XKl+(XMI*El)/Rl**2*(R2-Rl)/DX

- (El/Rl+R*TMPI) *(XM2-XM1)/DX-XKI/Rl*(E2-El)/DX;

E2.=-XM2*(E2/R2+R*TMP2)*XK2+XM2*E2/R2**2*(R2-RI)/DX

-(E2/R2+R*TMP2)*(XM2-XM1)/DX-XM2/R2*(E2-El)/DX;

TMPI.=O.;

TMP2.=O.;

XK1.=O.;

XK2.=O.;;

where R and DX are constants and the known equilibrium values from a

2
test run can be read in. Since TMP = (e - m /2p)/pcv, TMPl. and TMP2. can

also be entered by differentiating this expression, but results will be

similar. Appendix A contains the output of SERIES for this input.

In order to avoid using the same derivative with respect to x,

-* a system based on one x point with constant input partial derivatives was

also tried. This system uses the variables: RX for p; XM for m; E for e;

RDX for 9p/ax; XMDX for amr/ax; and EDX for ;e/3x; TMP for temperature, and

XK for d(ln A)/dx.

20



RX.=-XM*XK-XMDX;

XM.-XM*XM/RX*XK- (R*T P- (XM/RX) **2) *RXDX

-2.*M/R*XMDX;

E. -XM* (E/RX +R*TMP) *XK+X*E/ ** 2*RXDX

- (E/RX+R*TMP) *XMDX-XM/R*EDX;

RXDX.=O.;

XMDX.=O.;

EDX.=O.;

TMP.=0.;

XK. =0.;;

Appendix B is the output of SERIES for this input.

Both systems were tested against the explicit Euler solution of the

corresponding initial value problem (SERIES also generates a FORTRAN

subroutine DIFFUN(T, Y, DY) which fills the array DY with the derivative

evaluated at u(t) where t = T, u is in array Y). It was discovered that

the radius of convergence of the power series contracted sharply for

values past the throat of the nozzle, so only values between the inlet

and the throat can be analyzed using STAN. Table I gives initial values

that were picked for analysis. Note that the throat is at x = .26

where d(ln A)/dx = 0.

Both of these systems were run with both sets of initial data, and

the resulting contractivity regions are displayed in Figure 4. These were

only achieved for At of 5*1 -1 2, and do not correspond to the expectations

of results from test runs. Also, they are identical for both the analytic

and numerical solution, which suggests they are actually an artifact of

the program STAN. This can be seen to be the case since the first step

of generating the stability region about an equilibrium point U* is to
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J.I

Figure 4. *Non-linear Stability analysis of the nozzle

problem. Solid line: m vs. e with center at

(16.5, 355587.). Dashed line: p vs. m with
center at (0., 16.5). Both axes of length 1.
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3. Research Findings

Relative to the specific research outlined in the original

proposal on this research, the following findings are of interest.

1. A study of recent literature on finite elements [l81,[l9]

reveals that use of finite element techniques are not easily adaptable

to nonlinear systems in several dimensions, especially when the system is

designed to be easily changed as different reentry vehicle configurations

are tested. The analysis of minimum and maximum step size found in [12]

is really inadequate in the finite difference case, depending as it

does on linearization of the differencial system, and a similar analysis

in the finite element case seemed both beyond the scope of the intended

research and not very fruitful.

2. Since the algebraic amplification matrices involved in the linear

stability analysis of the methods under investigation did not point out

the experimentally observed instability, it was inappropriate to develop

a complicated algebraic manipulation package to compute such matrices.

3. After working with the two model packages HVSL and the converging-

diverging nozzle, it was concluded that the 'Form in which the updates to

the dependent variable vector is derived (the "delta" form), resulting

in parts of the numerical method being computed at various stages and places

in the program, would make it difficult to submit these codes to use by

standard packages, [20], [21] which usually require a single subroutine such

as DIFFUN(T, Y, DY) to compute the first derivative array DY given the

state variable array Y and the independent variable, T. On the other

hand, the "delta form" can be easily adapted to most implicit multi-step

correctors

k ~ k
U(x) E a ci U(x ji) + AXZ a 8i (x J-i),
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search from U* along a particular line in (u, u ) space emanating
2

from U* searching for the initial conditions of the bisection method, i.e.,

find i such that AV(U* + 2i(el, e2 )) has different sign from

AV(U* + 2 i+l(el, e2 )), where (el , e2) represents the unit vector in the

search direction for the two variables being changed, u1 and u2. The

variable i varies from -3 to 4. In most applications of ordinary

differential equation stability regions, the various state equations are

not highly coupled, and when two equations are coupled, one usually

attempts to find the stability region using these two variables. For

discretized partial differential equations, however, the variables are

necessarily highly coupled, and apparently a change on the order of

100 percent creates an immediate overflow. Thus, the actual stability

region for At = 5*10 - 1 2 occurs because AV = 0 when At is made so small

that V(U(0),u2 (0)) = V(Ul(At),u 2 (At)) by either numerical or analytical

techniques.

To test this hypothesis, one value, at x = .24, of p, of m, and of e

were each changed to 10 times their original value and the original,

linearized, converging-diverging nozzle program was run. In each of the

three cases, overflow stopped the calculation by the third time step.

Therefore, STAN must be modified to take into account the coupling of the

state variables when analyzing the stability of systems of partial

differential equations. This modification is currently being made. If

successful, it would open the way to automatic stability analysis of

- complicated systems of nonlinear equations to allow researchers to choose

which numerical method is most appropriate, from a stability standpoint, to

integrate their parabolic-hyperbolic discretized system.
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with only the additional storage for carrying the U(xi) U'(x~i

terms. Also, methods for changing step size Ax and even changing from

one formula to another could be adapted from the packages. However,

since the finite differences are usually only first order accurate the

effort on nonlinear systems of a high order method in the independent

variable versus a low order method in the spatial discretization is

not yet understood. Certainly in the linear case there is a stability

argument against it.

4. The best tool now available for the analysis of a nonlinear

parabolic system could be STAN, provided an understanding of how to

reduce a discretized system to one of a convenient size for such an

analysis. Certainly the cost of both computer time and programmer time

of entering the entire discretized system is prohibitive, yet the two

attempts to enter significant subsystems did not yield sufficient information

to show the value of this analysis technique.

However, experimental evidence exists that the numerical methods

currently used to model high speed flow on a cone is, at best, marginally

stable, and the results suspect. Continued research should be undertaken

to provide an understandable method for directly analyzing the stability

properties of parabolic-hyperbolic systems, and comparing them to the

stability behavior of numerically generated solutions, and to chose, when

appropriate, more accurate numerical methods that do not require significantly

larger storage.
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APPENDIX A

Output of SERIES for divided difference formulation



SUBR-OUriNE UIFFUN(TtYDY)
DIMENSION DY(20), Y(201
DATA RI 171b./,XK1 /7.86711/,XK2I7. 59839/,CV/4290./,DX/,Ol/
DYf1)=-(Y14)-Y(3))/DX-Y(3)xxKl
DY(2)=-(Y(4)-Y(3))/DX-Y(4)-XK2

-- 42Y(3)Y()WY()YI))XK+(()Y1**-,Y7"((2Yl)/X

___ +2.=Yl(4/Y(21)(Y(4)-.Y(3) /x _______ _

DY(4)*(-Y(Ld1*Y(4)/Y(2)%XK2+((Y(4)/Y(2)**2.RwY(8))(Y(2)mY(J)I/DX-m

+4.Y(3))/Y(2)Y(4)-2)Yf)~)/
DY_(9)=1 _________________________________________________________

RET UP N1)RY 7):((4 -( ))D -(3/ ( )*Y 6 -Y 5 )O
ED( ) - ( ) ( ( ) Y 2 + x ( ) - K + ( )w ( ) Y 2 * 2 ( I ) Y 1 )



SUB3ROUTINE SOL(TYOYNEWIND)
-* DIMENSION YO(203,YNEW(20),ZZZB(20),OTFAKE(20),DRI(20) ,R1(20),XM2
* _____ (20)tX.M1 c ot, Sf 20) ,rSU(20),TSV(20),TSW(201,TSX(20),OR2(20oR2

e420),TS1(20),TS2(20).QKXMI(20),TS3(20),TS4(20),TS5(20),TS6(20).TS7
+(20),TS8(20ObTMP1(20),TS9(20) ,TTS(20),TTT(20),TTU(20),TTV(20),TTW
+(20),TTX(20),TTY(20)tTTOIObtTTI(20OhTT2(20),DXM2(20),TT3(?O)tTT4
+(20),1T5(20),TTb( 20)tTT7(20OhTT8 (2ObT-'-MP2(2- 0),TT9(20),TUS(2ObtTUU
+( 20), IUV( 203, TUW( 20), TUVI 20), TUO( 20) ,TUL( 20), TU2 (20) DE 1(20) ,El
+(Z0),TU3(20),TU5120),TU6(20),TU7(20),TU3(20),TU9(20),TVS(20),TVT
N(20),TVV(203,TVW(20),TVX(20),TV2(20),TV3(20OhTV4(20),E2(20),TV6
+(20),TV7(20),TVR(20),TV9(20),0E2(20),TWS(20),TWU(20)tTWV(20),TWW
+120hgTWX(20htTWiYt20-),TWZ(20),TW(20,TW2(20b9TW3(20)tTW4(20),TW9
+(20j,TXS(?!O),TXT(20)tTXW(20),TXX(20),TXY(20),TZ6(20),TZ7(20),TZ8
+120)tTZ912O)tTOS(20),TOT(20)PTOU(20),T0012O) ,T02(20)PT03(20),TO4
.(20),T3J(21,T3V(20),T3W(201,T3X(2Oh9T3Y(20),T3Z(20),T30(201,T36
+(20),T38(20),T39(20),T4S(Z0),OTMPI(20),OTMP2(20),TFAKE(20)
DATA R/1716./, XKI/7.a6711/tXK2/7'.59839/,CV/4290./,DX/.0l/
EPS=1..0Ef_______ ____ _____________

RU 1)=YU( 1)
,2( 1) =YO(2)

_____ XM1 (_)=Y0(3) __ ___________________
XM2(1I)=Yt3(4)
El(l)=Y0(5)
E2( 1)=YO(6)
TMPI.( 1) =YO(7)
TtIP2( I)=YO(8)
TFAKE( 1)=YO(9) ______________________

i ND=O
0O 1 111=1,19

TST(III)=XM2(III)-Xf41fIII)
____TSU(III)=TST(IlI)/D)X_______________

TSW(111I)=XMI(111 )*XKl
________TSX( II) =TSV( III)-TSW( III) _ _________________

.iWIUII1)=TSX(TIJ __________

____ ___ S1(II1)=XM2(III)*XK2 __________ ______________

* -- TTSI2( 11I) =TSV( I II)TTI
DR<2 (III TS2( III)
R2(III_+_1)=DR2(II[)/FLOAT(I[I) _____________

TS3( III)=.
DO 100 JJJ=1,III

* 100lo TS3(11)=TS3(IlI)+XM(JJJ)*XM1(III-JJJ+)______________
IF (LII.EQ.1) GL TO 101
TS4(iII)=TS3(II1)..TS4(1)*RlII[II

___ ___IFI11.EQ.2)GO TO 102 ______ ________

DO0103 JJJ=2, 1111
-0 103 TS4(IiI )=TS4(111 )-TS4(JJJ)vR1(IIIm.JJJ,1)

102 TS4(I11I)=TS4(1III/Rl(l) _ _______

GO TO 104
* 1(01 TS4(11 1)=TS3(11I ) /Rl( III)

104 CCNTLfNUE_____________
rS5(111)=TS4(!I!)"XKi -

TS6(II1)=-TS5(1I[I
____ ___IF (III.EQ.1) GO TO 105 ___________

____-- TS7(III)=XM1(III)mTS7(1),ai(III)



11f(JII.FQ.2)GO TO 106 -

On 107 JJJ=291I1
__107 rS71(I!)=rS7(1II)-TS?(JJJ)*Rl(II1-Jjj+l) __ ____

106 TS7(1III)=TS711 II) /RII 1)
GO TO 108

105 1S71II!)=XMI(III)/Rl( I1I) _ _____

108 CONTINUE
TS8 (III)=0.
00 109 JJJ=1,Iv ________

109 TS8UII1)=TS8( 111)+TS7(JJJ *TS7(III-JJJ+lJ
TS9(11I)=TMP1(111)UR
TTS(1II)=TS8CIII)-TS9([II__ _____________

TTT( 1II)=R2(II1)-RI( lIii
TTIUIIII)=0.
00 110 JJJ1I1I_ ____________________________

110 TTIIIl)=TTU(III)+TTS(JJJI*TTT(III-JJJ*1)
TTV( III )=TTU( 111)/OX

____TTW(_III)_=TS6( I I I) + TT V( Il I__ I____ _____________

TTk( III )=XMI( 111)-2.
IF (III.EQ.1) GO TO Ill
TTYiIII)=TTX(1II)-TTY(1)*Rl(lII)______________
IF(II.EQ.2)GO TO 112
DO 113 JJJ=291I111

113 TTY(II[)=Trv(Il)TTY(JJJ)*Pl]III-JJJ+fl _________________

112 TTYCIII)=TTY(III)/Rl(l)
GO TO 114

ill TTY( II1)=TTX(I1I)/Rl(III)
114 CONTINUE

TTO(I111)=0.
DO 115 JJJ=1,I _____________________

115 TT0(111)=TT0(111)+TTY(JJJ)i-TSTIIII-JJJ+l)
TT1(lI1)=TTO(III)/DX
TT2( IIH =TTW( III)-TTI(_III) __ ________ _________

XML(II + 1)=OXMl1III)/FLoAT(III)

116 TT3CiII1=TT3(III)+X42(JJJ)*XM42( 1II-JJJ+1)
________IF (III.EQ.1) GO TO 117 _ _ _____________

IF(III.EQ.2)GO TO 118
____ DO 119 JJJ=2,11I1 __ __________________

T19 Tr4(11)=TT4(111)TT4FYJ)h'k21Ir-J fi-1)
*118 TT4(1I)=TT4(III)/R2C1)

^C TC 120 __ _ _ ____ ____

1.1 TTnTV-rTvFTv1/k( I IT
120 CCNTIN1JE

___TT5(11II =TT4( II) *XK2 __ __ __ _____________

IF (III.EQ.1) GC TO 121
-TT7 ( I II I = XM2 ( I I I) -T T7 (1 I 'R2 (II I

00 123 JJJ=2,I11
123 TT?(III )=IT7(1I1)-TT7(JJJ)*R2(1II-JJJ+1l_____

GC TO 124
121 TTI( I11)=XM2( I!I)/.R2(1111 I___



TT8(111)=0.
DO 125 JJJ=19II1

K ~125 TT8(1I1)=TT8UIII)+TT7(JJJ)*TT1( II1-Jjj41)___ _________

TT9( 111)=TMP2(111*R
TUS( III )=TT8( 111)-TT9(I11)

_______ TUU(111I)=O. _____

DO) 126JJ=,i
126 TUU(11!)=TUUCIII)4TUS(JJJ),TTT(1I[-JJJii)

____ TUV(Ilfl=TUU(I11)/OX -_ _______

TtUW(IliJ=TT6(1II I+1UV( Ill)
TIJY(III)=YT7( il) *2.

________ TUQI II) =0. __ ___________

00 127 JJJ=I, II
127 TUO(III)=ruDII1UtTUY(JJJ), TST(II1-Jjj+fl

TUI ( I II) =TIJO( I1I1) /OX
TU2( III JTUW(11I1)-TUlL III)
DX142( l113=TU2( III )

__ XM(III + 1)=DXM2(III)/FLOAT(IHI) ___ ________

IF (I1I.EQ.1) GO TO 128
TU3(11II)=EI ([II)-TU3( 1) *R1 (1!I)
IF(I11.EQ.2)GO TO 129
00 L30 JJJ=2,1I 1

130) TU3( III)=TU3( I1I)-TU3(JJJ)*Rl(I11-JJJ+l)
129 TU3([II)=TIJ3(111)/Rl(l) ________ _____________

GL TO 131
128 TU3( III)=E1lI 11)/RlI 11)
131 CONTINUE _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

TU5(111)=TU3( 111).TS9(II[3
TU6( 1111=0.
00 132 JJJ1,I _____________

132 T61i=U(I+M(JJTJ(lIJJl
TU7(1III)=TU6C III) XKI

TU8(111)=0.7(1

DO 133 JJJ=1,111
133 ThJ9( III) =T'J9( 111) +XMI(IJJJ ) *E1 (II -JJJ'1) ___________________

TVS(ILI=O.
DO 134 JJJI,111l

134 TVS(111)=TVS(1113+R1IJJJ)*R-1(I[1-JJJ.1I) _____

[F (I[[.EQ.1) GO TO 135
TVT(I11)=TU9(III)-TVTuI1*TVS(II)

______ IF(11[.EQ.2)G0 TO 136 _ ____ _______

DC 137 JJJ=29i11
137 TVT(11)=TVT(I II)-TVT(JJJ)kTVS( 111-JJJ41)
136 TVT (1111 =TVTI II) /TVSI 1) ____ ______________

(;0 TO~ 138
135 TVTIIII)=TU9CIII)/FVS( 111)
138 CCJNTP"4UE ____________

DO 139 JJJ=1,II1
139 TVV(III)=TVV( I11)4TVT(JJJ)"TTT(1[1-JJJ+lI______

TVX(I11I)=TU8( III) TVW(III)
___ _ V2( 111)=0.

DO 140) JJJ=1,11

-TV3( I II ) =TV2( I I I) /OX__________
TV41Ufil )-=rTVX( 11 -1V3( 11-1)--------- - - -__________

- -w--



TV6H1HI)=E2H(111-El (III)
TV7I 1113=0.
0141 -JJJ-=1,9111___________

141 TV7(III,=rV7U11LJ+TS7CJJJ)*TV6Uhi1-JJJ+1)
TV8( III )=TV7( II) /DX

____ TV9C 111=TV4(1I1)-TV8(1II) ______ __ _

OEW (I1 )T9( iII)
Ei(II1 + 1)=L)EI(I11)/FLOAT(1IIJ

___ IF (I I IEJ. I) GC TO 142 ___ __ ___ _ _ _ _ _ _ _

TWS( III )=E2( III )-TWSt I)-R2( 11)
IH II 1. Ell .2)GO TO 143
00 144 JJJ=2,III1 __ ______

143 ThiS(I11)=TWS( III) /R2( )
GC TO 145 ________________

142 TwS( III)=E2( Ill)/R2( III)
145 CONTINUE

T %U( III)=T'#S(LI 1I+TT9( II) _ _ _________

r-Tv 1113=0.
DO 146 JJJ=1,I1

146 TWV(113TWVfIII)4X42(JJJ)'NTWU(1I1-JJJ+1)
TW'W(1I II =TWV41I1 )*XK2
TwX LIII -T~w( I1I)
TWY (1113=0.
DO 147 JJJ=1,I1I

147 TWY(III)=TWY(111I]+Xi42(JJJ)*E2(1II-JJJ+l)
TWZI_1130. ______________
00 148 JJJ=1.EII

148 TW-Z(1[I)=TWZ(III)+R2(JJJV&R2(1I[-JJJ+l3
IF (11I.E(;.1) GO TO 149 _ __ _________________

IF(1211.EQ.2)GU TO 150
00-151 JJJ=2,p1I1_______ __ ___

151 TwO III_ )= W (___T__--j)i-WZ-l!I:;-Jj !

GO TO 152____ _ _ _ _ _ _ _ _

152 CONTINUE
TW2(III1=O. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

DO 153 JJJ1I11l
153 Tw2(11)=TW2(111)+TW(JJJ'xTTT( III-JJJ*1)

TW311I1)=TW2H(II) lOX ____ ___ ______________

TW4( III )=TWX(i[)+W(II
Tw91111I)=O.
00 154 JJJ1I1 __ ____

TXS (1II)=TW9( 1113/OX
______ TXT( III) =TW4( II) -TXS( 1113

DO 155 JJJ=IIII
-~155 TXW( I11)=TXW(1I1)+TT7(JJJ)*TV6( III-JJJ+1)

- XXC rxxi1T-11 )x ___ _

TXY(I1) =TXT( II)-TXX( 111)
LJE2( !II)=TXY( III)

E2(l111+ 14=DE2(TII )FLOIAT( 11) .

16-TZ6112 ~tZ6111)+X41(JJJ)nRTT2(111IJjj4L3 _

LA



IF (III.EQ.1) GC TO 157
TZ7(III)=TZ6(II1)-TZT(1)*Rl(I I

SIF(I1!.EQ.2)GO TO L58 _______

Dc. 159 _JJJ=2,II[11
159 TZIT( III)=TZ?(1I)-TZ7(JJJ)'RI(III-JJJ+L)
L58 TZ7( II) =TZ7I I I1)/Ri (1) ___ _____

GO TO 16U
15*7 TZ7( III )=TZ6( II) /Rl( III)
l-160 CONT INUE ___ _ _____ __

TZ8(I1)=TV9(III)-TZ7(I111I
IF (III.EQ.1) GO TO 161
TL9(11I)=TZ8(I111i-TZ9(L)-:RlLIll?__ ____

DO 16.3 JJJ=2,11
1 t3 T1 ) (I II ) =TZ 9( I11) -TZ9 (J j.J)* RI[III-J J J + I ______________

162 TZ9(II1)=TZ9(1II)/R1(1
GO TO 164

I o TZ9(_III_)=TZ.8( III) /;kl(11)ll_________________
1,754 -C NTfI(JE

TOS (III) =0.

16 DO ( I=OSlS JJ 1 II _____ _ ______ ______ ______ _____

IF (III.EQ.1) GC TO 166
TOT(III)=TOS(III)-TOT(1)*R.1(III) _________________

I F( II I .E .2 )GO0 TO 16 7
DC 168 JJJ=2,I11

* ~168 TOT(111)=TOT(I1I)-T0T(JJJ)*R1(,III-JJJ+1)____________
1b7 TOT (III) =TOT( 111)/Ri (1)

GO TO 169
166 T0T(III)=T0S(1I1)/R1(III) ______________

169 CONTINUF
T0U(III) =EI (II)-.TOT( Ill)

- - TOO( CIII =0. ________ _ _ _ _ _ _ _ _ _ _ _

U0 L70 JJJ=1, 111
170 T00(I1)=T00(111)4-TOU(JJJ),,'TSX( Ill-JJJ+l)

IF (Ifl.EQ.1) GO TO 171 ________________

T02 (I II )=TOO( I II) -T02 1iTV(Il
IF(III.EQ.2)GO TO 172
DO 173 JJJ=2,II1 _________________

173 f 02f(I[11 =RO 2 -HI I ) _;T_02(QJJ3*T V S_1-I_-JJ J[ L
172 T02(11&1)=T02(ilIH/TVSfl)

______GO TO 174 ____ __ __

il111 l1 - =-UiYTOO0HItTJT/1VSUC1 1-f-
174 CONTINUJE

T03(111)=TZ9(lll)-TO2([I11)______
T044 [i) =T)3( 111) ICy
DTMPI( Ill )=T04( 11 1)

____ TMPI(IlI + l)=OT.4PI(I1)/FLAT(1II.)
T3U( u 11 I ) = 

_____ 
--

00 175 JJJ=1,II1
* ~175 T3U(11)=T3UCI1II+Xt42(JJJ)*TU2(III-JJJ+l) ____

IF H 1iI.EQli GO TO176-
T3V( 111 3T3U( III)-T3V( 1)-R-( I I)
IF( 1I.E.2)GO_ TO 177___________

__ ~ D _ _ ~-jj__ _ _ __ ________

L73 T3V1111)=r3V1 1IJ)-T3V(JJJ)*R2(iI-jjj+l)
__177 T3V(III) =T3V( III) R2( 1) __

CG TL, 1 79



I1Is T3V( I II) =13U( II/R[1) -_ ___ ___

179 CCNTINUE
______ T3W I I I)=TXY( III)-T3V( III) __________

IF (I!I.EC.1) GO TO 180
T3X (II) =T3W( III) -T3X (1 ).R2 (III)

_______I F III.E.2)GO(LTO 181 _______ _____

3C 132 JJJ=29I11
132 T3X(I11)=T3X(Il)T3X(JJJ)*R2(Ii-JJJ+l)
1,31 T3X(- II 1)=T3X( I I I -R-2{ 1) __ ___ ____ ___

GO TO 163

133 .- CGNTI-NUE _________

13Y (III) =0.
DO 184 JJJ=1,1II

1,34 T3YUIIJ)T3Y( 1Ij+XM2(JJJ)IXM2(11I-JJJ4A)_____________
IF (III.EQ.1) GC TO 185
T3Z(1IIJ=T3Y(II1)-T3iZC1)'R2(I1fl

___-- IF(1II.EQ.2)GO TO 136_________
DO 167 JJJ=2,I11

1136 T3Z(I11)T3Z(IIIl/R2(l) ______ __________

_____-GO T 188
135 T3Z(1II)=T3Y(III)/R2fIII)
1,38 CONTINIUE__ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _

T30 (1II) =E2 III )-T3Z(II11
T3b(111I)=0.
DC 189 JJJ=1,lII _____

139 T36(III)=T36(111)+--T30(JJJIsTS2(-I-IIJJJ+.)
IF (I11.20.1) GC TO 190

1Ff J11.EQ.2)GO TO 191
DO 192 JJJ=2,1I1

192 T38( I I)=T38( II1)-T39(JJJ)%TWZ(1I I-JJJ+1)__________________
191 r811=3C1)Tdl

- 'G0TO 193
-190 T38( IIl)=T36(1II)/TWlZ( III)

19 CNTNUE
13 T39( III) =T3X( III) -T33( III)

____ __T4S( 11I)=T39( III)/CV

TMP2( III + 1)=DTM4P2(IIH/FLOAT( 111)
______ IF ( I1I.GT.1)0TFAKE(IIIJ=0. ________

TFAKE(III + 1)=DTFAKE(Ill)/FLOAT(I1I)
____IF (I II .LT. 4) GO T

00 194 JJJ1, 1111
ZZZZl-ZZ1Z +Pl1(JJJ)
IF(JIJ.LT.I[I-4)GG TO 194
?LZZ=IZZ2 + AIS(RIJJJJI) )-

194 C(JNT INUF
____ 7ZLL1=EPSAAS(ZZZZ1) +1.) _____

IF (ZlIZ2.G3T.ZZZZI JGJ TO 1
IiiL 1=0.
ZZZ12=0._____



Z111=ZZZZI *R2 (JJJ)
IF(JJJ.LT.III-4)GU TO 195
ZZZZ2=ZZZZ2 +. ABS(R2(JJJIl ___ ____

195 CCNTPIUE
ZZZZ1=EPS*(ABSIZZZZI) + 1.)

_ IF(lZZZ2.GT.ZZZlI)GO TO I_________

ZZZ12=0.

D 01Z?b=J JZJ1 XtlJ)

IF(JJJ.LT.III-'t)GO TO 196
___ ZZZL2=ZZZZ2 +ABSCXM1(JJJ))______________

l '6 CNTT UE
ZZZZ1=EPS,(ABS(ZLZZ11 + 1.)
IF(ZZZ72.GT.ZZZ1I)GtU TO 1I_______________
Z ZZ Z I1= 0.
ZZZZ2=0.

_____ DO 197 JJJ=1,11 I________ I____

a LLL1=ZZLL1 +XM2( JJJ)
I F (JJJ .LT .11-4 )G 0 TO 197
ZZZZ2=ZZZ2 +A3S(XM42(JJJ))

197 CCGNT I UE
ZZZZ1=EPS--(ABS(ZZ1Z1J + 1.)
IF(LZZZ2.GT.ZZZZ1)GO TO 1
Z ZZ 11=0.
ZZ/Z2=O.
DO 198 JJJ=1IIJ___ __________ ______________

ZZLL1=ZZZZ1 4E1(JJJ)-__________ ______________

IF(JJJ.LT.111-4)GO TO 198
ZZZ12=ZZZZ2 + ABS(El(JJJ))____ _______________

193 CCNTIN'UE -________________

ZZZL1=EPS*(ABS(ZZZZ) +-1.)
_____ ___IF(ZZZZ2.C T.ZZ -ZZ1 )GO_-TO 1 ____________

LZZZ 1=o.
ZZZL2O.:
DO 199 JJJ=1,1I1 __ __ ______________

-~ Zlf7iZ MlZ _4&2(J
IF(JJJ.LT.1I-4)GO TO 199

___ ZZLZ2=ZZZZ2 4- ABS(E2(JJJ))___ _______

ZZZZ1=EPSz(43S(ZZZZ1) +-1.)
_________F(ZZZZ2.GT.ZLZZZ1 )GOTOI__ __________

ZZZL2=0.
___DO 200 JJJ=1,I11 ___

IF(JJJ.LT.111-4)GO TO 200

LZZZ2=ZZZZ2_4+ ABS(T:MP1(JJJ))_ ____

ZLLZI=EPS=(ABS(7ZZZl) + 1.)
IF(111Z2.GT.ZZZZ1)G() TO 1

JO 201 JJJ1 I1 11
ZLL1=ZLZZI 4TmP2(jJJ)
IF(JJJ.LT.111-4)GC T!7 201

/ZZ/Z1IZ~Z2 + 4HS(r;'4P2(JJJHl



ZZZ1EPSiM3ASCZZZZI) + 1.)
IF(ZZZZ2.GT.ZZZZI)GO TO 1

_____~-4 zL 1=0.__ 
________ZZZZ2=0.

DO 202 JJJ=1,lIllI
_____ Z UI=ZZZZ1 *TFAK E(_JJJ) _______

IF(JJJ.LT.III=Lt)GO TO 202
ZZZ2=LLZ2 + AtS(TFAKE(JJJ))

231)2 C CN TINIE__________
Z L ZZI = E PS b S (ZL Z Z + 1. I
IF(ZZZZ2.GT.ZZZZ1)GO TO 1
GOC T (;- 2 _ _ __ _ _ _ _ _

1 C UN T 1NU E
2 C C NT UUF

IF(AbS(kl(JJJ)).LT.E'S) Go T 203
K KK =J JJ

_ _ GC TO 204 ________

203 CC:NTINUE _____

204 ZZZZ1=o.
KKK1=K(KK + 1 ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

DO 205 JJJ=KKK1,NliI
205 ZZZ7].=ZZZZ1+AB3S(Rl(JJJ))

IF( ZTZZ1/Af3S(Ri-I (KKKI) .GE. L P4D=INO4 1
DC 206 JJJ=1,NIII1
IF(ABS(Rl(JJJ)).LT.E=PS) GO TG 20a
KKK=JJJ ____________________

GC 10 207
206 CCNTINUE
207 Z ZZ Z 1= 0. _________________

KKKL=KKK + 1
DO 208 JJJ=KKKI,NI1I

201 ZZZZ1:ZZZZL4-AiS(P(JJJ))_____ ____

DO 20) JJJ=lNIT!
_______IF(A3S(RflJJJ)).LT.EPS) GO TO 209

GO TO 210
209 CCONT INU E __ _______

210 Z Z ZZ1I= 0
KKKl=KKK + 1

________DO 211 JJJ=KKK1,,NII __ ____________

2 11 LLZZL1=ZZZL-AiS (R 1 ( JJJTY
IF ( ZZZZ1/ 4S( 1 (KKK )GE .1)ID=IN) I-

____ flC 212 JJJ= 19 NIi 11__
_____- T(4 ,S-k2 CiJJJH-.L T.4PS) TO -21-2

K~KK=JJJ
6r, TC 213

* 212 ~-crJNTIJE-
*213 ZIZZI=0).

* .KK1=KKK + I
J17 2i4 -JJJ=KKKIHI I

' 7214 Z1ZZ1=1ZZZl+.AbS(R2fJJJ) )

L215 JJ J1 ,N I[I I _

IH(AfAS(V2(JJJ)).LT.EPS) 60 TO 215

GC TC 216 --- ~- __



215 -CONTINUE
216 ZZZ1I=0.

KKK=KKK + 1 -______

00 217 JJJ=KKK1,NIII
217 ZZZZI=ZZZZI+46S(R2(JJJ)l

___ ___IF (ZZUZ1/AIS(P2(KKK) ).GE.1 )IND=INO + 1 _____

O218 JJ J= 1,N I
IF(ABSfR1(JJJ)).LT.EPS) GO TO 218
KKKJJJ ________

GC TC 219
213 CONT I 1UE
219 z1ZZ.1~o._______ ___ _____ ______

KKK1=KKK +1

0C 220 JJJ=KKKI.,NIII
220 ZZZZI=LLZZ1+ABS(Rl(JJJ))____ ______________

IF(ZZZI1/ABS(Rl(KKK)).GE-It)INRD I tQ + 1
DO 221 JJJ=1,NIII
IF(AiBS(TVS(JJJ)).LT.EPS) GO TO 221__ ___________

GC TO 222
221 CONTINUE ___ _ _ _ ____________________

222 ZZLZ1I=0.
KKK1=KKK + 1
00 223 JJJ=KKK1,41II

223 ZZZZI=LIZ7Ii-ABS(TVS(JJJ))
IF(ZZZ.IIABS(TVS(KKK)).GE.1)IND=IND +I

DC 224_JJJ=I.,NIII __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

IF(SAS(R2(JJJ)).LT.EPS) GO 10 224
K KK =J .J J

224 CCNTI1NUE
225 ZZZZ1=0.

XKK1=KKK + 1 __ ___ ___ _________________

DO 226 JJJ=KKKlviNI I
226 ZZZZ1=ZLZI14ABS(P2(JJJ)

IF( ZZ-ZZ1/ABS(R2,(K-KK)).GE.1) INO=IND 4 __ __ ______

DC 227 JJJ=1,NIII
IF(AFBS(TWZ(JJJ)).LT.EPS) GO TO 227
KKK=JJJ _ _ ___ ______ __________ __

GO TO 228-----------__________ ________-

227 CO NT INU E

f K-1=-KK K + I - - - ____________________

* On 229 JJJ=KKKlNIII
* ?.?9 ZLZZ111ZZZ1,ABS(TWZ(JJJI)_________

DO 230 JJJ=1,NIII
S ~IF(A8S(Al(JJJ)).LT.EPS) GO TO 230 __ ____

KKK=JJJ _________

GO TO 231
230 CON TI NUJE

KKK1=KKK + 1

10f 232 JJJKKK1II_____

IF( ZZZZ I/A.3S( Rl(KKK)) ). E. 1 IND=IrND I'
___ )C 233 JJJ~l,\41II

IHA3V~1IJJ).LT.PS)GO To 233------ - __



KKK=JJJ
GC TO 234

213 CONTINUE______ _______

*234 ZLZZI=0.
KKK1=KK( + 1
DO 235 JJKK.NI ______

*235 ZZZZ1=ZZZZI+4BS(R1IJJJ))
IF-(LZZZI/ ABS(Rl(KKK)).GE.1) IND=IND +1

___ DO 236 JJJ~1,41II1__ ________

___Ti- L (tS1JJ)LT . EP S) GL- -TO- 26-
KKK=JJJ
GO TO 237 _ _ _______

237 ZZZZI=O.
KKKI=t(KK + 1 _______ _ _ _ _ _ _ _ _ _______ ______

00U 233 JJJ=KKKI,NIII
238 ZZZZ1=LZZZI+AF3S(R L(JJJ)i

IH ZZZZ1/A3S(R1(KKKfl .GE.1 I[ND=IND +1 ____ __________

DC 239 JJJ=1,'JIII
IF{Af3S(TVS(JJJ1).LT.EPS) GO TO 239
KKK=JJJ ____ _ _ ___________________

GC TC 240
239 CONTINUE
240 LZZl:0. ___________________

KKK1=KKK + 1
DO 241 JJJ=KKKlfNIII

24- ZZZZ1ZZZZI.+ABS(TVS(JJJfl______________
IFIZZZZ1/AiS(TVSIKKK)&E1IDIN I
DO 242 JJJ=1974III
IF(A3S(R2(JJJ)).LT.EPS) Go TO 242_______________
KKK=JJJ
GC TC 243

242 CCNTIN',UE_________________
243 ZZZl=o.

KKK1=KKK + 1
DO 244 JJ,J=KKKINII ____ __________ _______

244+ ZZi11=ZZZZ1+AdSIR2(JJJ)l
IF(LZZZI/.ABS(R2(KKK)).GE.LIIND=IN4D I1
DC 245 JJJ=1,N1II_____ __ __________

K K K=JJ J
GO TO 246 ___

245 CCNTINUE
246 zzzzI=o.

KKK1=KKK + 1 __________ _____

00 --- 247- J-J= K-KKI, -
247 ZZL11=ZZLL+ABS(R2(JJJ))

____ IF(ZZZlI/AaS(R2(KKK)).GE.1) IND=IN) 1 ________

- - b0 -2 48 -J-JJ-=1-1. I11 - ---- - - -- -- '- - -
IF(ABS(FR2(JJJ)).LT.EPS) GU TO 248

2438 CONT INUE
2-+9 IZZLZ1~). __________ _______ _____

K''(K1'(KK I
0(3 251) JJJ=KKKI,WIII

?S3 lZZZI=ZZlL1+AiS('12(JJJ)) _____

IF(ZZZL1/ABS(;2(KKK)~).GtE.I)INJ'=JND I



00 251 JJJ~lp.III
IF(ABS(TWZ(JJJ)).LT.EPS) GO TO 251
KKK=JJJ __ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _

GO TO 252
251 CCNTINUE
252 ZZZZL=O.___ ________ _____

KKKI=KKK + 1.
DO 253 JJJ=KKKl,NIII

- 253 ZZZZ1=ZZLZ1+Ai3S(TWZ(JJJ)) ___ _______

IF(ZIZZ1/AbS(TfeL(KKK) J.GE.1)lIND=IN) +
NlII=,NIII +- I
ZZZ3( 1)=R.1(NI1I_______ ______________

DO 254JJJ=2,NIII
254, ZLZBfJJJ)=Rl(NIII-JJJ+1) + T*ZZUf3CJJJ-1)

YNEW( 1)=Z ZZ B(NII I
ZZL3( L)=R2CNI II)
DO 255JJJ=2,,NIII

255 ZZZ(JJJ)=R2(NIII-JJJ+l) + TlcZZZB(JJJ-1) __________

Y NEW( 2) =ZIZ Z6(N III)
ZZZO( 1)=XMI(NlIII)
DO .256JJJ=2,NIII

256 ZZZt3(JJJ)=XM14NIII-JJJ+1) +. T*ZZZB(JJJ-I.)
YNEhm( 3) =Z ZZ BNI I I
ZZZ3(1)=XM2(NIIIH
DO 257JJJ=29NIII

257 ZZZB(JJJ)=XM2(NIII-JJJ+l) + TnZZZB(JJJ-1)
YNEvv 4) =1ZZB( NIII)
ZZZBC 1)=EI(NIII)
DO 258JJJ=2,NIII

258 LZZB(JJJ)=E1(NIII-JJJ+l) + 1TZZ~b(JJJ-1) ______________

YNEi%( 5) =ZZZB( NI 11)
ZZLBU 1)=E2( NI III

___ DC 259JJJ2,NIII ______________________

?59-EZWJ7JJ=E2(NIII-JJJ+lw ~YTZZi3T(fJ-1)
YNE't ( 6) =Z ZZ B3 ( N IllI
Z ZZ3M 1 ) =T.MPLI( NI I I) ___ _________

DC 260JJJ=2,NIII -___ ____- -_

260) ZZZB(JJJ)=TM'P1(NIlI-JJJ+l) + T,*ZZZB(JJJ-L)
________YNE-(7)=ZZZ8(NIII)________

- ZZZB(1)=TMP2(NIII )
DO 2bIJJJ=2,NII[

__261 ZZZ3(JJJ)=TM1P2(NITI-JJJ+L) + T*ZZZB(JJJ-l)__ _______

ZZ3(fl)=TFAKE(NIII)
00 2o2JJJ=29AII _____ __

21,2 ZLZ3CJJJ)=TFAKE(NIII-JJJ-1) 4TmLZZ (J-1) -___-__

Y.NIEA( 9)=IL NIl!)
TE rJ kN ___ __

E ND



APPENDIX B

Output of SERIES for constant spacial derivative formulation



SLBI CUT[NE CLFFLN(TPYPUY)
DIPENSIONk DY(20)tY(20)
DIATA R/1716./.IJX/.Ol/ _________________

0Y(3J=-Y(61sY(j131iY(6-Y(5)..DX _________________

U(IV () =0.
OY(5)Y5()Y2*(24~1)=-Y(5*'5/()Y1)I* ()Y()Y21)*2*Y(2inYH))/

,i)X-2.PYt6)/(tt3)*IY(b)-YI54)/DX -

JY(8J=-Y(5)*(Y(8)/Y(2D+R*Y( L0I))Y(I2)+Y(5J4*Y(8)/Y(2)**2a(Y(2ImY(I
+1 iX ( ( )Y 2)R Y 1 )* Y 5 -Y 4 )D - ( 1Y 2) ( ( )Y 7 )C

OY)=X-Y(6)A(Y(3) /Y(3l)*Y( L)fY(513)/YI6Y()/Y(3)*u()Y(3))Y(2

OY( i1)=O.

CV (12 )=0.
OY( 13) =0.
RE TURN
ENO0



SLBHCUTINE SCL(TvYCvYNEW.,1NCI
0IJ'ENSICN YC(20),YNEW(20) ,ZZZB(2O),DRO(20),RO(2O),0RL(2O) .Rl(20).

+XM( 120), XK( (201 ,TST(20),TSL(20)tX4O(20IJSIV(-20) ,TSh(2Oi±.LSX(205pO
*R2(20),R2(20),XI2(20)tXK2120).TSYI20)eTSZ(20)tTSO(20i,TSI(20)tTS2
+(203,OXMO(20),CXL4I(20),153(20).TS4(20),TS5(20),TS62)TMP.(20),T
+S 7(20) TSE( ?_Q) S9(40I1-_LTT2Q_) TT(t2j0h-T rru(2 0 -JjjrV(2029#TTw( 20)q T
+X(20),TTY(2C),7T020),TTI(2C),TT2120) ,0XM2(20),T13(20),TT4(20),YT
.+5(20),TT16cU),TMP2(20) ,TT7(20J,1T8(20),1T9(20),TUS(20),TUT(2ObTU
+U(20) 1 UV( 20 9 UW201 UX(2C),LTU( ,U 2) Tt(2)FTU2120)tOEO
+( 20) PEN ZG) 90EI (20),tEl(201 vTU3(20) pTU5( 20),pTU6( 20) #TU7( 20) tTUE
+(20),Fu9(2o0hTvs(zo),T14(20),TVV(20),TVh(20),rVX(2O)tTV2(20iTVJ
*(2J),1V4(20),TV6(20)tTV7(2C)TV8(20tT9(2),OE2(20,E(20)Ths

+120) vTW3( 20 ) tTW4I20) tT69(20) TXS 20) rTXT(20) tTXV( 20 tTXW( 201 rTXX
E-(20), TXY(20) ,.aXKI(20) ,DXK2(20),DTMPI(20),OTMPZ(20)
OATA R/ll7o .1,CX/*.01.
EPS=1.OE-6

RI( 1.=YC(2)
Rl(l)=YC(31

TXP( 1)=YCC 1)

XPI (1) =Y(1)

XK2( 1.)=YG( 131 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

D)C 1 111=1919
NLII_1__________________
1111=111 - 1
IF 1GTlC(1110
ORGCI) =0._____________ _____

PO(Ill + I)=DRO(I)/FLOJAT(Ill)

OC 100 JJJ=1,flI
100 TST(LL i)=1ST( iI )+XML(JJJ)*XKI(1I I-JJJ+1)

IsUc III )-TST(IU )
T SVC 11) =XIM1(111 )-XMO( III)________________

* 1S6(111)=1SVCL11)/OX
TSX( LI!)=TSL( II I)-TSd(II)
DPI (III) =1SX( III) _______________ _________________

TSYCIII)=C.
UC 101 JJJlp1

101 1SY4III)=TSY( 1[[)+XM2(JJJ)'XK2CIII-JJJ+1)
ISLI 1II)=-TSYE III)
TSO( 1111 XP2C III)-XMl( It) ____ ________________

T 5z2 1 11 1) = T 3 Z(1I11I) -T s 1 (L II

112( all + I)-zOF'2fIII)/FLLATC III) _____________

IF (ILI.GT .1 )OXP'0III) 0).
ijXYO"C j) =0._____

XYIt )= X O I I /F C 7 I I



1S3 (111) ZC.
UC 102 JJJ=1,I1l

102 TS3(11LLL=T3UU~)+XM1(JJJ)OXPLU[[-JJJ+l)
IF (II1.EC.1) GC Ta 103

If( III EQ.2 )GC 10 104 _____ _________

DC L05 JJJ=2,11I1
105 T . (1113= 1S4(I111)-TS4( JJJJ*H [([1 -JJJ+ 1)
104 TS.(111)=TS4(1I1)_/RLI)___________________

GL TC 106
103 TS4(I11)=TS3(1LI)/RI1LI)
06b CCNTiNUE

T55( 1L1)=0.
DC 107 JJJ=1,III

IV7 TS5( 111 3TS9(ili)+TS4(JJJ)*XK1(1I1..JJJ+lI
TS6(111)=-TS5( 111)

IF (II1.EC.1) GC TC 108

I F( I11 E Qs2 1G C T10 10 9
JC 110 JJJ=2,1[11 ____________________

1ob 1 S84 111 I=XS8( 111)/RI( 13

I111 LINT INUE
TSS(11I)=C.
Or: 112 JJJ=I.,III

112 TSS;( 1113=159(1 11)+TS8(JJJ)*IS( III-JJJ+i)
115(111 )=TS7( Il1)-T59(ILII_____

TTLl1111=0.
DC 113 J J J=1, I____ I___________

113 T TJ ( I IL IT L I II ) +T T S( J JJ--- -,f(7f Z-JJJ+ I)
TToI I IS III) -TTTU( III)
TTXIIII)=XS6(L11)-IV(11 __

IF (iI1(.)GC TC 114

IF(II.-EC.2)GC 10 115
DC 116 JJJ=2t,111

116 TTY( 11fl=7TY(LI1)-TTY(JJJ)*k1CI1I-JJJ+1) _________________

115 TTYI 1)=1TY(1I)/RiI Ii
GC IC 117

114 TTYI II1)=1TX( IIL)/RI( 11 _________________

T10(I11)=0.
CC 118 JJJ=1,11 III__

118 ITJOLIlI=lro( I1I)+TTY(JJJ2*TSV(111-JJJ+L)
T I1I(111) =TT0(111) /CX
TT2 21113 )= IIM II T(111) _______________________

u)t III 1(111I=112(1I11I)
X.'1(111 + I 3=C~t( 11) IFICATI 11
T 13 ( I II ~C . ______________

Lic 119 JJJ=L,11I
119 1T711l)=13(111I+Xg42(JJJ)*XtA2(111-JJJ+lI

AF (_11__,.__GLL2

T14(i l)=T 3(il )-TT4- rR( rl-



IF(lll.EC.2GL TO 121
Ur- 122 JJJ=2,lI111

122 714(111) =174(111) -TT4(IJJJ I'R2 (11 1jjj41 I
121 TT44 111)=T4(1IlI)/R2(L1

G1 TL 123
120 TT4( 1112=T31 1111 /hR2( 111) ____________________

123 CCNfINUE
TT5( II) =0.
CC-124 JJtj,1ltl

124 TT51 ILi)=115111[)4TT4(JJJ)NXK2( 11I-JJJ41i
1 1113 l=-TT5 (ill)
TT7I 111 )=IMP?( LLI j_*R __________________________
IF (III.EiC.l) GI IL 125

IF(11[.EiQ.2)GC 10 126 __________________

DC 127 JJJ=2pl111
12? TTd( I 1)=lT8(ILI)-TT8(JJJ)4R2(I1A-JJJ+1)
126 I 18(11 )=TT8(111) /R2( 1)

GC IC 128

128 CONTINUE
1191 ILII)C.

12 LO 129 JJJ=1I1I
1rg9 TTII1)=TT9( 1I)411T8(JJJ)*TT8( 1li-JJJ+1)

TLS(III)=?T7(ILL)-7T9( Ill

TUU (III I=C.
L)C 130 JJJ=1.11

1.30 TUU(I11I)TUU( I[I)ITUS(JJJ)'tTUT(11[.jjj+1)
TUV CIII)=IUU( I I[I) /CX__________ _______

TUWf111)=TT6(1[I)-TUV(11[)- _ ____

TUXIIII) =X'2( III)*2.
IF (II[.EC-ii GC TC 131._____
rUY (111)rux ([II) -TUY (1) 'R2(1113
IF(II[.EC.2)GC TO 132
CC 133 JJ4=2tIIl1________________

133 TUY ( I II = IUY( III )-TUY (JJJ )*W2IF1-JJ1
132 TUY(II[)=IUY(111)/R2(l)

GC IL 134 _______________

131 TUY( III)=1UX(LIi)/R2(ILl)
134 CONTINUE

TUOC 1113=0. ___ _____________

DC 135 JJJIo M1
135 TUC(J(II)=TUOiIIJ+TtjY(JJJ)'TSQ(Ii1-JJJ*1)

t)XP~2(II) =TL2 (III)
X,'2 (111 + 1) =UX'2 (l1) / FLOAT 1[1 _________________

IF {[1I.GT.1)UEC(IIli=C.

ED(II + 1)=0EO(1II)/FLCjIT(II1)___________

IF I III.E(;.I) G-C TC 136
Tj31 II1)=EI( III)-1U3( 1) Rl( III)

IF(1J1.EcQ.2)GC TO 137 _________

JL 138 JJJ2,tII11

13 7 TU3 (113 = ILi(IILI/R 1(1)__ _______________

GC IL 139



139 CCFNT1NUE
TL5( 111) =1Lj3( 111) 4TS7( ilI) ____________________

DC 140 *JJJ=1,i11
140 TUc;( I II I tU ( IIL) +Xiii( JJJ)'TU5I I L-JJJ*1)

DC? 14L JJI l I 11
- 141 TJ7(1113=TU7(111I)TUb(JJJJ*XKLIl1-JJJtI ____________

TL8 (1113=-TU7((111)
TU9(ill )=C.
OC 14.2 JJ J = I III

1't2 TUS ( I I I)=Tu9( II) +X11(JJJ)*EL(I11-JJJ+1)
.rVS( 1I)=0.
DC 143 J J J = II

14 3 TVoS( I IL 1) =TV 51 llii+Rl(JJJ)-Ritil -JJJ+L)
IF (III.EC.1) GC TC 14'.
TVT(113)=TU9(I11)-TVT(1) T'VS(I[13
IF ( I IIEQ.2 JGL 10145
D)C 146 JJJ=2t lii

L45 TVT(LIL)=T\0T(111/TVS(l)
GC TL 147

144 TVT(111)=TU9( I11)/TVS( 1113
141 LCNTINUE

TVV(111I)=0.
DC 148 JJJ=1?LI

1'+8 TV'v( I I)=rlvV( lli)+TVT(JJJ)=TTTHIII-JJJtil
TVhdJ.1I)=TVl([LI1)/DX
IVX (II) =TUe( 111) TVh( 11 __ ___________________

TV2 t111)0O.
OC 149 JJJ=1,l1

149 TV2( I)=1v2( 1I3+TU5(JJJltTSV1I11l-JJJ+1) _______________

Tv3(Ifl=TV2(ILI)/DX
TV4.(111) =TVX( Ill) -TV3( III)
1V6( I II J=E1 (11 I 3 -EO( I II I_________________

TV I (111 I) =0.
CC 150 JJJ=1,111

150 Tv7(Li1l)=TV7(111)*TS8(JJJ)*TV6(iIlinJJJ+1)
Ivo84 Iii)=TV7( 111)/OX

111 II)=TV4( L111-TV8( [II)
DEl I II I) =TVS ( II I ) ___________________

EI(II + 1)=DEI(II)h/FLOAT(1IlI
IF (1LL.EC.1) GC TC L1,
T *mS( II I )E2(I1)-TWiS(1)*R2(II1)_________________
IF~IHI.E%.2)GC TO 152
UL 153 JJJ=2,111

153 TwNS( 1I)=T-SCtI [)TWS(JJJIOR2(I1[-JJJ+i)___________

GL TC 154
151 T' S(1III)=E2( III )/R2( 111____ _________

154. CCNT INUE
TAUC 111) T'AS(1II) +TT7( 111
l-oyv I I I) =C._____________ ______

U) r( I I I )=boV( I )+Xjy2(JJJ)fTnU(I [I-JJJ+1)
T AA (l i I .I_________ I__ I______=______C_____._

iA. 156 JJJ=1,Li1

A M



Oc 151 JJJ=1,1Ill

OC 158 JJJ=1,IIi

IF f1ll.E .I) GL TC 159

IF(1II.EQ.2)GC IC 160
OC lb1 JJJ= 1[I1.

161 T.o(11l)=TbiO( I I)-Ta0(JJJ)*TWZ( I1)-JJJ+1)

150 TbO 111 I II hY ( I I I T i1 ( IL

162 CL.NIINUE
Ti%2(11II)=C.
CL~ 163 JJJ=lt 111

163 Th2(1I1)=1W2(ILI)fTWO(jJJ)"TUT(III-JJJ+iI

Th' (Ill) =0.(II)

DC 164_J J J = I111_________________

164 TW(111li)=TWi9( 111)+TWU(JJJh-TSOLIII-JJJ~l)
TXS ( I II 1=Tini'( 1111/Ox

lxv (112) =E2(111)-EIl 11

UC 165 JJJ~iv111

TXX 1111) =TXi( I1 1) /COX
TXY1 I1) =TXT( I1I1-TXX( 111) ________________

DE2(111)=TXVU II)

IF ( 1I1.GT.1)G1MP1(I 1[)=0.___________________
OTMPl (11=0.
Tif.PI( Ill + i)=QIMPl(III)/F1-CAT( ILL)
IF IIIl.GT.1IOTfVP2( I11)=0.

Ti'P2( ILL + 11=UTMP2( lliJ/FLCAT(l Il)
IF (111 .G.1I)GXK1Il11)=0.
W(KI( 1 1=0 .
XKI( I1II1 1) =UXK1(I1)/FI.GAI (111)
IF (1I1I[.G;T_*_1)XK2( [If_1=0. _________

DXKZ( I1)= 0.
XK2(liI + lJ=O;XK2(l11)/FLCAUIEllJ
LF_(I I iL T .)GCC_ __________1_

I I =I I I

Z Z Z Z=0.

IX LbO JJJ=Lli1
LZ11111111 4RO(JJJ)

IF(JJJ.LT.111-'i)GL TO 166
ZL12=LLZZZ f ABS(1&0(JJJ))

16t) LCNTli,,JF

Lf-(LLL2.GI.LIAZ1IGU; TL I



LZLZz=O.
ZLLZ=U.
OC 16 1 JJJ=I, I I 11_____________
LZZ1=LLLIll +R1(JJJ)
IfH:JJJ.LT.1I1-4)GC TO 167
111L2=LLIZ2 + AdS(RI(JJJ)I__________

1* 7 CCNTINUE
LLZI'=EPSx(AL3S(ZZZZI) + 1.)
I-(ZLLZ2.GT.11!l)GC TC I ________________

ZZLLI=0.
ZLLZ Z2 =0.
L) C 16 8 J J j=LiI __ 11___ 11_____

ti~1 ZLZI 1L +R2 (J JJ)
IF(JJJ.LT.1II-4)GC TO 168
tLLL2=lZLZ2 + tAdS(R2(JJJ)) ____ __________

1ebd LCKTINUE
ZZi=EPS,'tASS(ZZZ1)J + 1.)
IFIZLLL2.CG1.ZLLZI)GC rc 1
LLLZ 1=0.
L ZL Z12=0 .
Dc 161 JJj!=11il ___________

LLZZI=ZL1 *Xf~'(JJJ)
IFI.JJ.LT.11I!4)GG TO 169
ZlLL2=ZZLZ2 + ABS(XtM0CJJJI)

109 CCNTINUE
LILL1=EPS*(ABS(ZZLZ1) + 1.)
IF(ZLZ12.CGT.ZZZZI)GO TC I
LLL11=0.
LZ1L2=0.
..C 170 JJJ1,11111_____________
ZILLI=LZZZI +AMIIJJJ)
IF(JJJ.LT.111-4)GL TC 170
ZLZ2=lLLZ2 + AES(XM1(JJJJ) _____ _____

170 CCNTLNUE-____ ______

LLZ11=EPSI(AbS(LZLZ1) *.1.)
IF ILLLZ2.GT.ZLZZI)GO IC 1 _ ___________

L L L ZI=0 .
LIZZe&0.
CL 171 JJJIIU 1111_________ _

ILLL=ZLLZI *XtP2(JJJ)
IF(.JJ.LT.Lii''dGC TG 171
1Z12=LZZZ2 + AES(XM'2(JJJJ) __________

171 CCNTINUE
ZZZLL=EPS*(AB~S(ZZZZI) # 1.)
IF(ZLZZ2.CT.LZI)GU TO 1 __ _________

LLLL I1=0.
IIZL 20.
UC 172 JJJ=III _____________

ILII=LILZl +EO(JJJ)
IF(.JJ.LT.11I-4)GC TO 112

* ~~I/Lt2=ZLLZ2 + ASS( EO(JJJf_________
it12 CL N [1NLE

LLIII=EPS*(A8S(ZZZI1) + 1.)
IF(IlILL2.GT.ILIZ1)GL TC I___________
I Z I? 1= 0.
ZI LL2=0.
.C 173 JJJ=,I 1____________
ZZLL1=ZZZZ1 *+1 (JJJ I

Ll



L.J JJ.tT-I. -Fl -4 )GC TO 173
LZZZ2=LZZZ2 + AES(EllJJJ))

1173 CLNIINUE________________
lZLZ1EPS*(A8tS(ZZZI3 + 1.)
IF(LZlZ2.CI.L1Z1)GC TC 1

ZL12=0.
DC 174 JJ,.=i,III1
11/2 1=/12/I *E2(JJJ I_________________
IF(JJJ.LII1-,4)GL TO 174
lZZL2=ILLZ + AdS(E2(Jjj))

174~ CCNI INLE___________________ ______

'Z/ilES*(ABS(lZt./_) * L.)
lF(Z1112.GT.ZLZZI)GC ILlI

L1ZZ72=O.
JC 175 JJJ=1,1111
LZ1ZI:iLll1 +TlNP1(JJJ)__________ ___________

IF(/2LL2.CT.ll/llk3C TC 1
Z~7 Q* Z_____ I______ I______=______0______._

21/22=0.
DC 176 JJ~j=I,iI11
LZIL1l=ZIZ1 +1I4P2(JJJ)___________________
IF(. JJ.LT.I1I-4iGtC TO 176
LZZL2=ZZZZ2 + AEPS(ITP2(JJJ))

176 CCNTINUL ___________

LZ ZZI =EPS tS(2/ I i.) _
LF(ZL112.CT.ZZI)Gu TC I
22111=0. __ __________

Z/212=0.
UC 171 JJJ=lt1111
2ZZ1I=LZLZ1 +XKIi(JJJ)___________
If-IJJJ.LTolli-a4)GC TC 177
ZLZZ2=ZL12 + AFUS(XK1(JJJ))

117 LCNT[NUE____________ _____

/~ll/=EvS*(A8SIZLZZ1) 4 1.)
IF(LZLZ2.GT.ZZZZ1)GC TG I
ZZ Z L10 I___ =___ 0_

* ULL12=0.
CC L18 JJJ=tl,11
L/Z1L=IZZI +XK2( JJJ) __________________

IF(JJJ.LT 111-4)GL TG 178
1Z22=11112 + AES(XK2(JJJ))

178 CLNIINUE ___ ______________

ZlLLl~cYS*(AdS(ZZLL) + 1.)
* IF(/L12.CT.ZLll)GO TC 1

61, TC 2 _ _ _ _ _ _ _ _ _ _ _ _ _

1 L XI INUF
2 LG i,.T INU E

_____ ~ O I) I*') JJJ= ,IN Il I~ I_____________

IF(AiSUkI(JjJl).LT.EPSi GC TC 179

G C TC 18 __ __ _ _ __ _ _ _ __ _ _ _

I I LCN I I l'JiE

A -_________________ __ _________________Now___



iso LZ Z L I =
KK&KKK +- I
DC 18Ljjj1KKINIL ____________

181 ZLZZ1=LZZL1.AL'S(Rl(JJJ))
LF(ZZZ1/lAt3SUR1(KKKJI.3E.1)ltC=LNL) + 1
OC lF2-- JJJ=1,A11L ~ ___________ __ _____________

1F-tABS(Ri(JJJfl.LT7.EPS) GC 7C 182

132 CCr.TINUE
bii3 ZZZLI=O.

KKKI=KKK 4 1 _____________ _____

DC 184 JJJ=KKK1,Nl

IF( LZL/Z1/AS(tkCKiKK ).C.1) INC~Ii\O 1
DC 185 JJJ=ltP~ill
It-AS(,R1(JJJfl.LT.EPS) Gu. TO 185
KKKJJJ

GC TC 1ti6
1(35 CCNTINUE

KK9I1=KKK +I
OC 187 JJJ=KKK1,NIII

167 ZZZI=ZZLL1+AeS(RI(JJJ))__ ___________________

IF( IZZI/AHS(Rl (KKK I).6ElIOIL i
DC 188 JJJItNI
lF(At8S(R2(JJJ)).LT.EPS) GC TO 188
IKK=JJJ
GC TC 189

1 J3 CCNTINUE _____________________

KKKI=KKK + 1
DC 190 JJJ=KKr4,N1III __ ___________

11)o ZLLL1=ZLLII.AtS(R2(JJJI)
IF(LL1Z1/ARS(R2(KKK) ).CE.1) INC=irNO +i
0C 191 JJJ=1,i,41I ___________

IF(AHS(R24JJJ)).LTEPS) GC TC 191
KIKJJJ
GC TC__192 ____ ____________ ____

191 CCNTINUE
192 /L IL1 =0 .

KIKI=KKK + 1 __ ____________

DC 193 JJJ=KKK1,N Iii
12j3 Zl1=ZLLZ/1APS(R2(JJJ))

IF(ZLZZ1/AeSCR2(KKKI).CE.1 UNC'=LN + I __ _____ ____

DC 194 JJJ=1,Nlll
IF(AtiS(aR2(JJJ)).LT.EPS) Gu TOj 194
~KK JJJ _________ ____________________

(JC TL 195
-194 CCITt.UE

KKI=1KKI( + I
DC 196 JJJ=,KK1,NIIIl

I~ ~lZ/1=lLZL1sAPS(R2'(JJJ)) _______

iKKJJJ

')L 

l 
7 

JJJ 
INlJ



1V7 CONTINUE
I1)a LZZLI=0.

KIKI=KKK 41

1 O9 Ic? JJJ=KKKIAS(LJJ ____ _ ___________

IF( ZLZLI/AiSVPI(KKK) ) U'E.i )INC= IND I
JOC 200 JJJ=1,\111
lF(AH33(TVS(JJJ)).LT.EPS) QC TO 200 _____________

GC IL 201
20 0 CCLTlU I___ ____ ____

201 1Z Z I=0 .
KKI=(KKK + I
DCU 2C2 JJJ=KKK1,N[E _________________

202 lLZ1=ZLZZl*AES(TVS(JJJ))
IF(?/.ZI1/A35(TVS(KKK) ).GE.I)t'tJ=.N0 + L
OC 203 JJJ=19N111
IF(4i3SlR2(JJJ)).LT.E*JS) GO 1G0203
KKK=JJJ
GL IC 204

2 ) 3 C CN I IU E
20 4t zLZL1=o.

KKKI=KKK_+_I ______________

DC 205 JJJ=IKK1,jNI1I
735 lZLZl=ZZZ1+AtS(R2(JJJI i

IF(I1111 /ABfS(R2(KKK) 3.CE.I I IM=1I\0 + 1.
00 206 JJJ=1~ItIl
1F(AtsS(TWL(JJJ)).LT.EPS) GC TC 20a

GO TC 20?
206 CCNTINUE
207 Z Z Z I= 0.__ _ _ ___ ________ _____

KK~K1=KKK + 1
00 203 JJJ=KKK1,N111

203 Z~ZZli=ZZZi+AeSCT .ZCJJJ) _____________________

IF(ZLLL1/485(TWZ(KKK) 1.GE.1) IrND=INO + i
i\lI1If'LIL +. I

Dc 209JJJ~z2,I~I1
209 LLLH(JJJ)=RC(N1II-JJJ+ll # T*1ZZi(~JJJ-LJ

YNEmC1)=ZlZE( NII___________ 11____ 1____________

oc 210JJJ=2,Nill

/-t- 21 /L( JJJ ) P IN I IIJJJ + 1 + T *LZ B( J JJ-i

YLi(C)=XZZ(NIII) _______

!)c 21 2JJJ=2.N1I 1

212 iL~d(JJJ)=XP0(lNII1-JJJ+H + T*ZLlui(JJJ-1)
I N L Y% . 2 4 Z 1 P ( N 1 11_____________

LZ td ( IXV'(N I AI
i)C 21L3JJJ=2,,NLlL1

213 1/Z L HJJJ)=XPIC1II.IJJtt? * Tu-lwZtldJJJ-I) ______



DC 214JJJ=29NLIII
214 ZZLB(JJJ)=XP2U'.III-JJJ*l) *T*LZLt3(JJJ-1)

JC 215JJJz2ThiilI__ ___ _________

215 ZiZB(JJJ)=EG(N~IL-JJJ+l) + T*?Llb(JJJ-L)

ZZ Z 2( I) = E 1 ( I~ I I ) _____ ______ ___________

LIE 216JJJ=Z,NILI
21lb LZZE(JJJ)=E-i(N1IIJJJ+l) + T*ZZZB(JJJ-II

Y NE .o( 8) = /22 Nl 11 _______________________

lZL4ll)=E2(NLIi)
LIE 217JJJ=Z,NIII

217 ZLZi(JJJ)=E2C1'III-JJJ+l) +~ T*ZZZU(JJJ-11
Y N EA 9 J= Z IZ 61N 1 1

LIE 218JJJ=2,N[III
218 LZB(JJJ)=Tl'P1(1\1I-JJJ+1I + l'ZZ1Lt(JJJ-11

Yt\Ehi1O)=ZZZB(NI1 I)
LZ 3(1)=T P2(NI1I)
DCE 219JJJ=2,NIII

219 ILLS(.JJJ)=TYP2(fNIII-JJJ+l) + T,ZZZI3(JJJ-1)
YNE6jII)=ZZBE(N III)

LIC 22OJJJ=2,'iIIl
Z2i) LLLE(JJJ)=XK1(NIIIl-JJJ+1) + T*/Zjj5(JJJ-1)

YNE'-A(12) =ZLZ6(N III)
ZZLB(1)=XK2(NIIII
DIC 221JJJ=29NIII__ _ _ _ _ _ _ _ _ ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

221 ZLLb(JJJ)=XI2(NIII-JJJ+1) + T*LL/.B(JJJ-1J
YN\Eh( 13 L=ZZZd3(NIl I I
R~ETL N ________________________________

E N



I
References

1. J. E. Fromm, "The Time-dependent Flow of an Imcompressible Fluid,"
Methods in Comput. Physics, 3, New York, p. 346 (1964).

2. R. D. Richtmeyer and K. W. Morton, Difference Methods For Initial
Value Problems, Interscience, New York (1967).

3. 0. C. Zienkiewicz, The Finite Element Method, Third Edition,
McGraw-Hill, London (1977).

4. R. L. Brown, "Investigation of the Computational Aspects of the
Numerical Solution of Flow on a Cone." Report 22, Vol. II,
Research Reports of 1978 USAF-ASEE Faculty Research Program,

(1978).

5. S. C. Lubard, and W. S. Helliwell,"Calculation of the Flow on a
Cone at High Angle of Attack," pp. 5-12, RDA-TR-150, R&D Associates,
Santa Monica, CA (1973).

6. J. Douglas, and G. E. Gunn,"A General Formulation of Alternating
Direction Methods," Num. Math., 6, pp. 228-253 (1964).

7. R. M. Beam, and R. F. Warming, "An Implicit Finite-Difference
Algorithm for Hyperbolic Systems in Conservation Law Form,"
Journal Computational Physics, 22, pp. 87-110 (1976).

8. D. W. Peacemen, and H. H. Rachford, "The Numerical Solution of
Parabolic and Elliptical Differential Equations," SIAM Journal,
3, pp. 28-41 (1955).

9. W. S. Helliwell, and S. C. Lubard, "An Implicit Method for Three-
Dimensional Viscous Flow with Application to Cone at Angle of
Attack," Report TR-0074(4450-64)-I, The Aerospace Corporation,
Santa Monica, CA (1973).

10. J. M. Hyman, "A Method of Lines Approach to the Numerical Solution
of Conservation Laws," Advances In Computer Methods for Partial
Differential Equations III, pp. 313-321, R. Vichnevetsky and
R. S. Stepleman (ed.) IMACS (1979).

11. G. Dahlquist, "A Special Stability Problem for Linear Multistep
Methods," BIT, 3, pp. 27-43 (1963).

12. S. C. Lubard and W. S. Helliwell, "Calculation of the Flow on a
Cone at High Angle of Attack," pp. 26-30, RDA-TR-150, R&D Associates
Santa Monica, CA (1973).

13. R. M. Beam and R. F. Warming, "On the Construction and Application

of Implicit Factored Schemes for Conservation Laws," SIAM-AMS
Proceedings of Symposium on Computational Fluid Dynamics, Vol. 1I (1977).

i . ..



14. R. L. Brown, "Stability of Sequences Generated by Nonlinear
Differential Systems," Math. Comp., 33, pp. 637-645 (1979).

15. G. Dahlquist, "G-stability is Equivalent to A-stability," BIT,
18, pp. 384-401 (1979).

16. N. Rouche, P. Habets, and M. Laloy, Stability Theory by Liapunov's
Direct Method, Springer-Verlag, New York (1977).

17. K. R. Kovach, "A Precompiler for Deriving the Time Series Solution
to Systems of Differential Equations," M.S. Thesis, University
of Virginia, Charlottesville, VA (1980).

18. D. H. Norrie, G. de Vries, The Finite Element Method, Academic
Press, New York (1973).

19. A. R. Mitchell, R. Wait, The Finite Element Method in Partial
Differential Equations, John Wiley & Sons, New York (1977).

20. A. C. Hindmarsh, "The LLL Family of Ordinary Differential
Equation Solvers," UCRL-78129 (1976).

21. G. D. Byrne, A. C. Hindmarsh, "A Polyalgorithm for the Numerical
Solution of Ordinary Differential Equations," ACM TOMS, 6 (1975).

i

r .-- ,"



DISTRIBUTION LIST

Copy No.

1 - 16 Air Force Office of Scientific Research

Bolling Air Force Base
Washington, D. C. 20332

17 - 18 R. L. Brown

19 J. M. Ortega

20 I. A. Fischer
Office of Sponsored Programs

21 - 22 E. H. Pancake
Clark Hall

23 RLES Files

0692:jt

'ii



UNIVERSITY OF VIRGINIA

School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate
enrollment of approximately 1,000 students with a graduate enrollment of 350. There are approximately
120 faculty members, a majority of whom conduct research in addition to teaching.

Research is an integral part of the educational program and interests parallel academic specialties.
These range from the classical engineering departments of Chemical, Civil, Electrical, and Mechanical to
departments of Biomedical Engineering, Engineering Science and Systems, Materials Science, Nuclear
Engineering, and Applied Mathematics and Computer Science. In addition to these departments, there are
interdepartmental groups in the areas of Automatic Controls and Applied Mechanics. All departments offer
the doctorate; the Biomedical and Materials Science Departments grant only graduate degrees.

The School of Engineering and Applied Science is an integral part of the University (approximately
1,400 full-time faculty with a total enrollment of about 14,000 full-time students), which also has
professional schools of Architecture, Law, Medicine, Commerce, and Business Administration. In addition,
the College of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others
relevant to the engineering research program. This University community provides opportunities for
interdisciplinary work in pursuit of the basic goals of education, research, and public service.

- I

Il
I

-,



flhhIjlh*?


